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PART - A

Answer ALL questions:



 



(10 x2 =20 marks)

1. If  V  is a vector over a field F, Show that (-a)v = a(-v)= -(av), for a 
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 F, v  V.

2. Is the Union of two subspaces is a subspace?  Justify.

3. Show that the vectors (1,0,-1), (2,1,3),(-1,0,0) and (1,0,1) are linearly dependent in 
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.

4. Determine the following mapping is a vector space homomorphism:  T :  
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 EMBED Equation.3 [image: image6.wmf]Â

by T(a,b)=ab.

5. Define inner product space.

6. Define orthonormal set in an inner product space.

7. Prove that  
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is orthogonal.

8. For A,B 
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Fn and 
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then prove that tr (A+B) = tr A + tr B.

9. Define Hermitian and skew-Hermitian.

10. Find the rank of the matrix 
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over field of rational numbers.

PART - B

Answer any FIVE questions:






(5x8=40 marks)

11. Prove that a non empty subset W of a vector space V over F is a subspace of V if and only if aw1+bw2 
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 W  , for all a,b 
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F , w1,w2 
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W.

12. If v1,v2,. . .,vn 
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V are linearly independent , and if v 
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 V is not in their linear span, Prove that  v1,v2,. . .,vn  are linearly independent.

13. Find the coordinate vector of (2,1,-6) of R3 relative to the basis {(1,1,2),(3,-1,0),(2,0,-1)}.

14. Prove that T :  
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 EMBED Equation.3 [image: image18.wmf]3

Â

 defined by T(a,b) = (a-b, b-a,-a) for all a,b 
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is a vector space homomorphism.

15. State and Prove Schwarz inequality.

16. If 
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 is an eigen value of T 
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 A(v), then for any polynomial f(x) 
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 F[x] , f(
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) is an eigen value of f(T).

17. If A and B are Hermitian , Show that AB + BA is Hermitian and AB-BA is skew-Hermitian.

18. Show that the system of equations  x1+2x2+x3 = 11, 4x1+6x2+5x3 = 8,  2x1+2x2+3x3 = 19 is inconsistent.

PART - C

Answer any TWO questions: 



              
                  (2 x20 =40 marks)

19. (a) Let  V be a vector space of finite dimension and let  W1 and W2 be subspaces of V such that

      V = W1+W2 and dim V = dim W1+dim W2. Then  prove that V = W1
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W2.

               (10 + 10)
(b) If A and B are subspaces of a vector space V over F , Prove that 
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20. (a) If V is a finite dimensional inner product space and w is a sub space of V, prove that 
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(b) Show that 
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is invertible if and only if the constant term of the minimal polynomial     

      for T is  not zero. 








           (10 + 10)
       21.(a) If 
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are distinct eigen values of  
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 and if v1,v2,. . .,vn are eigen vectors of 

                 T belonging to   
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respectively, then v1,v2,. . .,vn are linearly independent over F.

             (b) If A,B 
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Fn, where F is the complex field, then 
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(10 + 10)

    22. (a) The linear transformation T on V is unitary if and only if it takes an orthonormal basis of V onto   

                an orthonormal basis of  V.

          (b) (i) If  
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is skew-Hermitian , Prove that all of its eigen  values are pure imaginaries.

                (ii) Prove that the eigen values of a unitary transformation are all of absolute value one.

(10 + 10)
$$$$$$$
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